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Framework-intensive applications (e.g., Web applications) heavily use
temporary data structures (i.e., temporaries), often resulting in
performance bottlenecks.

It is common for temporaries to occur as mini-data structures (i.e.,
groups of connected objects), built up with much effort only to be
thrown away shortly thereafter.

Understanding the contributing factors to excessive use of temporaries
is critical to being able ultimately to fix these performance problems.

This paper presents an optimized blended escape analysis to
approximate object lifetimes and thus, to identify these temporaries
and their uses.
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Main Contributions

An optimized blended escape analysis algorithm

Prune away unexecuted basic blocks in methods, achieving increased
precision and scalability
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Main Contributions

An optimized blended escape analysis algorithm

Prune away unexecuted basic blocks in methods, achieving increased
precision and scalability

New metrics

for blended static and dynamic analyses that quantify key properties related
to the use of temporary objects

Empirical findings

Characterize the nature and usage of temporary objects in representative,
framework-intensive Java applications.
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Escape Analysis

A technique for approximating the effective lifetime of objects, i.e.,
computing if and how newly created objects become visible beyond the
method in which they were created.
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Escape Analysis

A technique for approximating the effective lifetime of objects, i.e.,
computing if and how newly created objects become visible beyond the
method in which they were created.

It has been used traditionally for compiler optimizations requiring
either information about an object (i) escaping a method invocation or
(ii) escaping an allocating thread.

Three defined escape states for each object: globally escaping,
non-escaping or escaping through parameters and/or return values
(arg-escaping).
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Escape Analysis – An Example

Example program

Objects that are reachable through

parameters or that are returned to caller

methods are labeled arg escaping.

An object is marked globally escaping

when it becomes globally reachable
(e.g., assigned to a static field).

Objects that don’t escape are marked as
captured.

7 / 22



Escape Analysis Algorithm1

A context-sensitive, flow-sensitive escape analysis algorithm.

Escape analysis proceeds in a bottom-up manner on the call graph.

A connection graph is generated at each call graph node to
represent a summary of the relevant data structures at that node and
the (current) escape state of abstract objects.

1Jong-Deok Choi et al. “Stack Allocation and Synchronization Optimizations
for Java Using Escape Analysis”. In: ACM Trans. Program. Lang. Syst. 25.6
(2003), pp. 876–910.
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Escape Analysis Algorithm – An Example

Example program

Phantom object node represents all objects that
could be passed to it.

Summary connection graphs for methods in the
example program
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Blended Analysis Paradigm

Dynamic analysis is used to obtain the calling structure of a particular

execution of interest and then a static analysis is performed on that
calling structure to obtain more detailed semantic information relevant
for performance understanding.
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Blended Analysis Paradigm

Dynamic analysis is used to obtain the calling structure of a particular

execution of interest and then a static analysis is performed on that
calling structure to obtain more detailed semantic information relevant
for performance understanding.

The hypothesis is that blended analysis will enable a more precise and
scalable analysis for performance understanding at an acceptable cost,
in comparison to a purely static analysis (i.e., too imprecise) or a
purely dynamic analysis (i.e., too costly because sampling will not
provide sufficient precision).

10 / 22



Blended Escape Analysis — ISSTA 20073

Used IBM’s Jinsight tool to generate a dynamic call graph used as
input to the blended escape analysis

The precision of the information in the connection graphs can be
improved by retaining richer calling context information — dynamic
calling context tree (CCT)2.

The postprocessing algorithm generates a reduced connection graph

for each context in the CCT, which provides a good level of
abstraction for understanding and manual exploration of temporary
structures.

2Glenn Ammons, Thomas Ball, and James R. Larus. “Exploiting Hardware
Performance Counters with Flow and Context Sensitive Profiling”. In: PLDI ’97,
pp. 85–96.

3Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. “Blended Analysis for
Performance Understanding of Framework-based Applications”. In: ISSTA ’07.
2007, pp. 118–128.
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Optimized Blended Analysis

Declared Types

Taking advantage of knowledge of declared types, type-inconsistent edges
are never added to the connection graph, which increases the precision and
reduces the execution time cost.
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Optimized Blended Analysis

Declared Types

Taking advantage of knowledge of declared types, type-inconsistent edges
are never added to the connection graph, which increases the precision and
reduces the execution time cost.

Basic Block Pruning

Prune a basic block from the control flow graph of a method if it can be
shown that the block was never executed. Unexecuted basic blocks are
identified using two kinds of dynamic information for each method,
observed calls and allocated types of instances.
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Experimental Setup

Escape analysis was built using the
WALA analysis framework.

Used IBM’s Jinsight tool to generate
a dynamic call graph. The Jinsight
profiler is routinely used within IBM
for performance diagnosis.

Used two well-known
framework-intensive applications:
Trade and Eclipse

Four benchmarks (three
configurations of Trade):

Trade Direct/Std
Trade Direct/WS
Trade EJB/Std
Eclipse JDT
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Experimental Results

Pruning Effects

Measure the impact of the pruning technique on the scalability of the
analysis

Metric 1: Pruned basic blocks

Metric 2: Execution time
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Experimental Results

Disposition

In escape analysis, every object receives a disposition, i.e., final escape
state.

Dynamic imprecision sometimes introduces ambiguity regarding the
path in the dynamic CCT traversed by an instance. a state henceforth
is marked as mixed (both escaping and captured).

Metric 3: Disposition breakdown

Metric 4: Disposition improvement – percentage of objects whose
disposition is improved by the pruning algorithm
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Experimental Results

Capturing Depth

A measure of the nature of the individual regions in the program
calling structure that use temporaries

The length of the shortest acyclic path from its allocating context to
its capturing context
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A measure of the nature of the individual regions in the program
calling structure that use temporaries

The length of the shortest acyclic path from its allocating context to
its capturing context

Capturing depth histogram
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Experimental Results

Concentration

Understand whether object churn behavior is typically concentrated in
a few regions, or is spread out across many regions

The percentage of captured instances that are explained by X% of the
top capturing methods
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Experimental Results

Complexity of Data Structures

A data structure in the reduced connection graph of a calling context in
the CCT consists of a root (i.e., an object with no incoming edges) and
those nodes reachable from it that have the same escape state.

Metric 7: # of types – number of distinct object types in each data
structure

Metric 8: # of allocating methods – number of distinct methods that
allocate instances that are part of this data structure

Metric 9: Height of data structure – length of the longest acyclic path
in the reduced connection graph from a given data structure root to
any other object in the data structure

Metric 10: Maximum capturing distance – the longest capturing call
chain corresponding to an instance contained in the data structure
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Experimental Results

Complexity of data structures (by occurrences)
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Conclusions

An optimized blended escape analysis algorithm, achieving increased
precision and scalability

Prune away type-inconsistent edges in the connection graph

Prune away unexecuted basic blocks in methods in the connection
graph

10 Metrics

that explain characteristics of the usage of temporary data structures in
framework-intensive applications.

Empirical Findings

Characterize the nature and usage of temporary objects in four framework-
intensive benchmarks.
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Thanks!
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